Cerebral Cortex Hyperthyroidism of Newborn Mct8-Deficient Mice Transiently Suppressed by Lat2 Inactivation
نویسندگان
چکیده
Thyroid hormone entry into cells is facilitated by transmembrane transporters. Mutations of the specific thyroid hormone transporter, MCT8 (Monocarboxylate Transporter 8, SLC16A2) cause an X-linked syndrome of profound neurological impairment and altered thyroid function known as the Allan-Herndon-Dudley syndrome. MCT8 deficiency presumably results in failure of thyroid hormone to reach the neural target cells in adequate amounts to sustain normal brain development. However during the perinatal period the absence of Mct8 in mice induces a state of cerebral cortex hyperthyroidism, indicating increased brain access and/or retention of thyroid hormone. The contribution of other transporters to thyroid hormone metabolism and action, especially in the context of MCT8 deficiency is not clear. We have analyzed the role of the heterodimeric aminoacid transporter Lat2 (Slc7a8), in the presence or absence of Mct8, on thyroid hormone concentrations and on expression of thyroid hormone-dependent cerebral cortex genes. To this end we generated Lat2-/-, and Mct8-/yLat2-/- mice, to compare with wild type and Mct8-/y mice during postnatal development. As described previously the single Mct8 KO neonates had a transient increase of 3,5,3'-triiodothyronine concentration and expression of thyroid hormone target genes in the cerebral cortex. Strikingly the absence of Lat2 in the double Mct8Lat2 KO prevented the effect of Mct8 inactivation in newborns. The Lat2 effect was not observed from postnatal day 5 onwards. On postnatal day 21 the Mct8 KO displayed the typical pattern of thyroid hormone concentrations in plasma, decreased cortex 3,5,3'-triiodothyronine concentration and Hr expression, and concomitant Lat2 inactivation produced little to no modifications. As Lat2 is expressed in neurons and in the choroid plexus, the results support a role for Lat2 in the supply of thyroid hormone to the cerebral cortex during early postnatal development.
منابع مشابه
Increased Oxidative Metabolism and Neurotransmitter Cycling in the Brain of Mice Lacking the Thyroid Hormone Transporter Slc16a2 (Mct8)
Mutations of the monocarboxylate transporter 8 (MCT8) cause a severe X-linked intellectual deficit and neurological impairment. MCT8 is a specific thyroid hormone (T4 and T3) transporter and the patients also present unusual abnormalities in the serum profile of thyroid hormone concentrations due to altered secretion and metabolism of T4 and T3. Given the role of thyroid hormones in brain devel...
متن کاملThe expression of thyroid hormone transporters in the human fetal cerebral cortex during early development and in N-Tera-2 neurodifferentiation.
Associations of neurological impairment with mutations in the thyroid hormone (TH) transporter, MCT8, and with maternal hypothyroxinaemia, suggest that THs are crucial for human fetal brain development. It has been postulated that TH transporters regulate the cellular supply of THs within the fetal brain during development. This study describes the expression of TH transporters in the human fet...
متن کاملThyroid hormone-regulated mouse cerebral cortex genes are differentially dependent on the source of the hormone: a study in monocarboxylate transporter-8- and deiodinase-2-deficient mice.
Thyroid hormones influence brain development through the control of gene expression. The concentration of the active hormone T(3) in the brain depends on T(3) transport through the blood-brain barrier, mediated in part by the monocarboxylate transporter 8 (Mct8/MCT8) and the activity of type 2 deiodinase (D2) generating T(3) from T(4). The relative roles of each of these pathways in the regulat...
متن کاملTransporters MCT8 and OATP1C1 maintain murine brain thyroid hormone homeostasis.
Allan-Herndon-Dudley syndrome (AHDS), a severe form of psychomotor retardation with abnormal thyroid hormone (TH) parameters, is linked to mutations in the TH-specific monocarboxylate transporter MCT8. In mice, deletion of Mct8 (Mct8 KO) faithfully replicates AHDS-associated endocrine abnormalities; however, unlike patients, these animals do not exhibit neurological impairments. While transport...
متن کاملtHyroId aBnormaLIty and neuroLogIcaL deFIcIts reLated to mct8 Loss-oF-FunctIon mutatIons
In addition, a recent study by Di Cosmo et al suggested a putative role of MCT8 in thyroid hormone secretion. Thyroid hormones are released across the basolateral membrane of thyroid follicular cells, adjacent to the capillary bed. MCT8 immunohistochemical localization at the basolateral membrane of thyrocytes and the impairment in the efflux of T4 from the thyroid gland in MCT8KO mice implies ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014